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LOW ENERGY THEOREMS OF BROKEN SCALE
INVARIANCE FOR LIGHT SCALAR MESONS

J.Lanik

Low energy theorems of broken scale invariance
are discussed from the point of view of 1/N, expan-
sion. A simple effective Lagrangian model realizing
these theorems and predicting scalar gluonium as
well as quarkonium masses is presented.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.

Hu3Ko3HepreTUUeCkue TEeopeMs HapyWweHHOH
MacwTabHOM MHBAPUAHTHOCTM ANA Nerkux
CKANAPHLIX ME30HOB

W.Jlanuk

C TOUKH 3pEeHHuA l/Nc pasnoxeHus OGCYXOAWTCA HH3~
KOf2HepreTHYeCKHe TeopeMpl  HApYMeHHOH MacmTabHON HH-
papuaHTHocTH. llpennaraeTcs NpocTas MoAenb abdbeKTHUB—
HOTO JIarpaHXuaHa, BHIIOJNHANMEro 3TH TeopeMbl, H Ipél~
CKAas3BbIBAWTCH MACCH CKAaJAPHBIX TJIYOHHA K KBAapKOHHS.

Pabora BumnonHeHa B JlabopaTOpHH TeopeTHUeCKOH
du3uky OUAU.

While at the classical level QCD possesses invariance
when quark masses are neglected, this symmetry is broken
by quantum effects/l’/ expressed in the anomalous trace
(ﬂnﬂ)ln of.the energy-@omentym tensor 6y, generating non-
conservation of the dilatation current Tu,i.e.,

5 P* - *y =-b Zsg® oW
9, 0% =6,y = -5 O O - (1)

where G are the gluonic field strength tensors, b =
-(11/3)N, -(2/3)Np with Ng and Ny being the numbers of
colours and flavours, respectively. As a consequence, one
can derive the following low energy theorem 72/ '

F(0) = -g-co (2)
for the two-point function

F@®) =i [d*e!?® <O|TH(x) H())|0> (3)
of the scalar gluonic current H=-@ "), Gg=
=<0KGMM)G;;GﬁV |0> is the gluon condensate.

10



In gluodynamics with N, = 3 and Ny = 0 eq. (2) combi-
ned with the assumption that (3) is dominated by a single
scalar gluonium ¢ gives a clear prediction concerning the
gluonium mass m, as follows:

2 2 11
where f, is an analogue of the pion decay constant f_:
_ 2
<OlH|o> = m>f_ . (5)

Unfortunately we do not know fo reliably to predict m, from
(4). Instead one can use (4) to determine the important
parameter f, as a function’/8/ of G, and m, with m, esti-
mated, e.g., by lattice calculations and/or by experiments.
However, when massless quarks are included, i.e. Ng # 0,
then also quarkonium states are created and one ‘can ask
whether (and in what sense) eqs.(2) and/or (4) could still
be reliably used to predict masses (or other parameters)
of the scalar particles (including quarkonia). We shall
answer this quastion affirmatively within the framework
of the 1/N, expansion’/4/,

To do this, let us remember that from the point of view
of the 1/N, expansion’4/ eq.(3) can be decomposed as fol-
lows :

F@®) =F,@® +F @%, (6)

where Fo(qg) is a sum of all planar diagrams without quark
loops while Fl(qg) is the sum of all such diagrams with
quark loop included. Thus, F_ (q®) is of the leading order
Oavi) in 1/N, while F,(q®) 1is O(N,) since each quark loop
is suppressed by a factor 1/N,. Fo(qg) knows nothing
about quarks and the only singularities of Fo(qg) are one—
gluonium poles, so it contains dominant information on
glue states. Comparing the lowest order in 1/N, terms on
both sides of eq.(2) for a large-N, limit we get

11N,
Fo@ = —=%G . (7)
This is the exact result of the N, += limit and for the
real world with Ny = 3 eq.(7) must be taken only as a pre-
diction of large N, dynamics. We shall see later that
this prediction, in fact, leads to the pure gluodynamics
result (4) as expected on general grounds of 1/N, expan-
sion 74/, Having this in mind we can combine prediction (7)
with (2) and (6) and obtain

FI(O) ="F3"F'Go- (8)
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Since on the planar diagram level Fl(qz) includes quark
loop contributions, then on a phenomenological level eq.(8)
should be understood as a prediction. concerning properties
of scalar quarkonia (their masses, mixings with gluonia,
etc.) while (7) concerns only gluonia.

We shall illustrate all this more explicitly within
a simple effective Lagrangian model’/3/ containing a scalar
gluonium field o(%), pion fields "1(x) (i =1,2,3) and
a flavour (u,d) singlet scalar quarkonium field S8(x), i.e.,
N.= 2. The quark matter fields 8 and n; are assumed to form
the genuine linear sigma model for chiral SU(2)xSU(2) sym—
metry ‘while the flavourless gluonium field ¢ is invariant
under the chiral SU(2)xSU(2) transformations. The Lagran-—
gian is of the form /%/

£-16, 0% +310, 9%+ @)% - V@8, 7)), (9

where the potential V is chiral invariant and obeys the
trace anomaly equation

1 v v v
0"  =-H (Z) =av-odL -s& -m S, 10
H an 0 t, do Js 1 ani (10)

where H0=(b/8)Go. Eq.(10) guarantees /3/ that the Ward iden-
tity (2) is realized in the present model. We neglect the
quark mass term and assume that SU(2)xSU(2) symmetry is
spontaneously broken. So, we shall use the following repara-
metrization of the fields ¢ and s /8/ .

o(x)
t

(4]
S(x) =t, + 8,

where f, =<0|c|0>, f =<0|8/0> and 0,8 and m; are the
correct fields with the VEV's equal to zeros. The potential
V is assumed not to contain derivatives of fields and it can
only be a function of the two SU(2)xSU(2) invariants ¢ and
s? + n2)1/2

SolJing eq.(10) we find

o(x) =1, exp( ), ()

J82+nf

14

g 4 4 4
Vo, S,rri =Ho(?——) 1n-6+a f( ), (12)

4

where C is an arbitrary constant of the mass dimension and

f is an arbitrary dimensionless function of the argument

(S +n?)1/2 /o. Since the gluonium field ¢ is an SU(2)xSU(2)
single{, it does not change the form of the SU(2) axial cur-
rent Ai# =83, m; - md,S, so we can use <0lA:¢| nd > =if"pu8”

to deduce that’8/
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e =~1f,, (13)

where the pion decay constant f, =93 MeV. Eliminating

terms linear in ¢ and S from potential (12) by requiring

<0] 2¥[0> = <0] Q—Y-IO> =0 we find the following mass
dc as

relations from (12) and (13) 758/,

m?, =0,

t‘a_m’fm=2f"m2ils . . (14)
2,2 2,2 _ b

f¢7m¢m“fwmss" 260 ’

where the gﬁ are entries in the squared mass matrix for
the ¢ and 8 fields. For the two-point function (3) we get
(in tree approximation):
2 1 e \2 /B 2
(famw - ?fﬂmae) (mu -q9)

Fa®) - . (15)

@2 -a®)@m? -o®) - i—m:s

We see from (14) and (15) that the present model realizes
the Ward identity (2). Having in mind that /‘/m%,, and __
mg, are ONJ), m% ~ O1/YyN_), f, ~ON) and f, -~ OWN,)
we easily extract the leading order in 1/N, term li‘o..O(N’é)
from (15) as follows
g 4

Fo@?) - '""'Wz. (16)

mfm -1
The term F_(q®) ~ O(N ) is then given simply as a differen-
ce of eqs.(lS) and (lg) (see (6)). Thus, for N = 3 and
Np = 2 egs.(6)-(8) and (14)-(16) give the following for-—
mulae

2 2 11 1
Iamw_ TGO ( 7)
and

2 2 2

femas = T G0 a8

We see that prediction (17) coincides with (4) found in
gluodynamics as one expects on general grounds /4/. On the
other hand, it is amusing to use (18) with @, =

= 0.012 GeV¥7/ o predict m,, = 960 MeV. This can be com-
pared with the mass mg= 980 MeV of a possible isovector
scalar quarkonium §(980) and we notice good agreement.
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It is worth to mention here that although a decomposi-
tion like (6) takes place/8/ also for analogous two—point
function of the pseudoscalar gluonic current asG“v(}£”,+
one cannot go further in the analogy since unlikely to O
channel the inclusion of massless quarks in O channcl re-
quires/8/ the (mass)2 ~O(1/N,) for the pseudoscalar fla-
vour singlet quarkonium 7’ in order to have cancellation
of the contributions from Fy and F; - like pieces. Such
a behaviour of the pseudoscalar channel is needed % to
remove the vacuum angle 6 — dependence of the theory in
the chiral limit. However, in O% channel no such a beha-
viour of F0) is demanded because the r.h.s. of eq.(2) is
pot zero for any value of N,, large or small, and so sca-
lar particle masses have expected 74/ behaviour O(N}).

The results (17) and- (18) can be nicely presented in
terms of a special form V, of potential (12) if one makes

a choice
J 2 2 J 2 2
f(___sf_i_"_f_.) .1 S 0 8% m +.,,1__9_n_(__.s...f_'_’}, ‘.
o 6 ¢4 t o 24 ¢4 o
o 7 w (19)
This translates (12) into
GO o 4 o Sz+ﬂf'
Velo, 8, my ) = —=(—) [1IN In— -~ 41In —1 +
24 f C t,
(20)
G
+-l--——2(82+ni2)2 ,
24 ¢4

T

where N, = 3. We have, however, written here the general
dependence on N, explicitly in order to do evident that
(20) is a sum of terms of increasing order in 1/N.. The
logarithmic term in (19) is required in order to extract
the pure gluodynamics potential from the rest of eq.(12).
This potential is the first (leading order in I/Nc) term
in (20)_and gives (17) if 4In(f,/C) = -1 to eliminate the
linear ¢ - dependence of V_,. On the other hand, to elimi-
nate the linear S -dependence from Vg, the second term
in (19) is demanded unambiguously. Thus, potential (20)
is a minimal one dictated by the large-N¢ limit of QCD
giving (17) and (18) (see also ref. 9/y, 1f we neglect
fluctuations of the gluonium field, i.e., we put o=f,

in (20), we obtain just a potential'VLsM for the linear
sigma model in the chiral limit as follows

G S&in? G
(s.n1)=-—-9-1n-‘(—--—'f-‘-+-l--f-%(sz“,f)z, (21)

v
LSM 3 £ 24
7
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where we neglet unimportant constant term. The potential
(21) together with corresponding mass relation (18) have
recently been derived by Andrianov et al.’1? directly
from QCD in their procedure of bosonization.

We conclude that the bosonization of ref.”10’ does not
yet include gluonia, and the only remmant of gluonic deg-~
rees of freedom that remains in the approach of 719/ is the
appearance of gluonic condensate Gy giving a non-zero mass
to an isosinglet scalar (8,d) quarkonium 8. Inclusion of
gluonia should lead to more general potential (20) (or
even (12)) realizing the total QCD Ward identity (2) while
(21) realizes only a piece of (2), 3%?;1y (8). Thus, it
seems to us that the result of ref. could encourage
efforts to derive an effective Lagrangian realizing (2)
by including gluonia as well as quarkonia directly from
QCD by integrating over the quark and gluon fields/11/.

We are grateful to Dr.D.Ebert for discussions and to
Prof.V.A.Meshcheryakov for interest and support in this
work.

References

1. Collins J., Duncan A., Joglekar S.D. - Phys.Rev., 1977,
D16, p.438. Nielsen N.K. - Nucl.Phys., 1977, Bl120,
p.212.

2. Novikov V.A. et al. - Nucl.Phys., 1981, B191, p.301.

3. Lanik J. - Phys.Lett., 1984, 144B, p.439.

Ellis J., Linik J. - Phys.Lett., 1985, 150B, p-289.

4. 't Hooft G.- Nucl.Phys., 1974, B72, p.461.

Witten E.- Nucl.Phys., 1979, B160, p.57.

5. Gomm H., Schechter J.- Phys.Lett., 1985, 158B, p.448.

6. Ellis J., Linik J.- Phys.Lett., 1986, 1758, p.83.

7. Shifman M.A., Vainshtein A.I., Zakharov V.I.- Nucl.Phys.,
1979, B147, pp.385, 448,

8. Witten E.— Nucl.Phys., 1979, B156, p.269.

9. Salomone A., Schechter J., Tudron T.- Phys.Rev., 1981,
D23, p.1143.

10. Andrianov A.A. et al.- Pisma ZhETF, 1986, 43, p.557.

11. For a recent review and further references, see D.Ebert
and H.Reinhardt. JINR Preprint E2-86-274, Dubna, 1986.
Invited talk presented at the Seminar "Quarks-86",
Tbilisi, April, 1986.

Received on October 17, 1986.
15





